A – Basics

  1. AI (Artificial Intelligence) – Computer-ku manushan maari yosikka teach panradhu.
  2. Machine Learning – Data-la irundhu self-ah kathukkara computer method.
  3. Deep Learning – Neural network use panni periya periya pattern kathukkara ML.
  4. Neural Network – Brain mathiri node-connect panni info process panradhu.
  5. Algorithm – Oru problem solve panna step-by-step rules.
  6. Model – Train pannina program prediction panna use aagum.
  7. Training Data – Model-ku padikka kudukkara data.
  8. Testing Data – Model padichadhu correct-ah iruka nu check panna data.
  9. Validation Data – Training time tune panna use panra data.
  10. Dataset – Collection of data arranged for AI padippu.

B – Learning Types

  1. Supervised Learning – Input + answer kuduthu model train panradhu.
  2. Unsupervised Learning – Answer illama patterns kandu pudikkara training.
  3. Reinforcement Learning – Good action reward, wrong action penalty kuduthu train panradhu.
  4. Classification – Data-va category-ku sort panradhu (spam vs non-spam).
  5. Regression – Number predict panradhu (house price maari).
  6. Clustering – Similar data-va group panradhu.
  7. Anomaly Detection – Odd/abnormal data kandu pudikkaradhu.
  8. Recommendation System – Suggest pannadhu (Netflix movies maari).
  9. NLP (Natural Language Processing) – Computer-ku manush language puriyara madri padippu.
  10. Computer Vision – Computer-ku image/video puriyara ability.

C – Words in Models

  1. Token – Text-oda chinna unit (word or part of word).
  2. Embedding – Text/image-a number-ah convert panna method.
  3. Vector Database – Embedding store panna special DB.
  4. RAG – Stored knowledge + new info combine pannitu answer kudukkara model.
  5. Transformer – Innum pudhusaa irukkara AI architecture (GPT use pannathu).
  6. Attention – Sentence-la important word focus panna technique.
  7. LLM – Periya model, massive text-la train pannathu (ChatGPT maari).
  8. Chatbot – Human-oda chat panna program.
  9. Prompt – AI-ku kudukkara input text.
  10. Prompt Engineering – Better prompt kuduthu nalla output vangara skill.

D – Training Related

  1. Fine-Tuning – Already train pannina model-a namma data-la adjust panradhu.
  2. Transfer Learning – Old model knowledge reuse panna new task-ku.
  3. Pre-Trained Model – Already periya data-la padichirukkara model.
  4. Zero-Shot – Example illama solve pannidradhu.
  5. Few-Shot – Konjam example kuduthu solve pannadhu.
  6. Generative AI – Pudhusaa text/image/music create pannidradhu.
  7. Discriminative Model – Category separate panna model.
  8. GAN – Oru model fake data create pannum, innoru detect pannum.
  9. Diffusion Model – Step by step image generate pannidradhu.
  10. Embedding Search – Closest match vector DB-la thedi pudikkaradhu.

E – Performance Terms

  1. API – Software-ku AI-oda pesara interface.
  2. Latency – AI answer kudukkara delay time.
  3. Overfitting – Training data memorize panniduchu, new data-la fail aagum.
  4. Underfitting – Model simple-ah irundhu data purinjuka mudiyala.
  5. Bias – Training data wrong balance-a irundha unfair result.
  6. Variance – Prediction too much vary aagardhu.
  7. Accuracy – Correct prediction percentage.
  8. Precision – Predict pannina positives-la correct irukardhu evlo.
  9. Recall – Actual positives-la detect panninadhu evlo.
  10. F1 Score – Precision + Recall balance measure.

F – Training Process

  1. Epoch – Full training data one round pass panna time.
  2. Batch Size – Oru time-la model process panna sample count.
  3. Learning Rate – Model eppadi fast-ah kathukkudhu decide panna speed value.
  4. Loss Function – Prediction wrong-a irundha error measure pannura formula.
  5. Optimizer – Model error reduce panna adjustment method.
  6. Gradient Descent – Step by step error kammi pannitu improve panra method.
  7. Backpropagation – Neural network weight update panna reverse calculation.
  8. Weights – Model decision influence panna internal number values.
  9. Parameters – Model-ku learning-ku use aagura adjustable numbers.
  10. Hyperparameters – Training start panna munadi set pannura settings.

G – Data Handling

  1. Feature – Prediction-ku use panna input variable.
  2. Label – Output or correct answer AI predict panna vendiyadhu.
  3. Feature Engineering – Raw data-la irundhu useful inputs create panradhu.
  4. Dimensionality Reduction – Data size kammi pannitu important info maintain panradhu.
  5. PCA – Data-ku dimension kammi panna math method.
  6. Normalization – Data value 0–1 range-ku scale pannuradhu.
  7. Standardization – Data mean 0, variance 1 mathri normalize pannuradhu.
  8. Data Augmentation – Training data variety create panna fake modifications (image flip maari).
  9. Label Encoding – Text labels number-ku convert panradhu.
  10. One-Hot Encoding – Category data binary 0/1 columns-la represent panradhu.

H – AI Transparency

  1. Explainable AI – Human-ku AI decision puriya mathri explain panradhu.
  2. Black Box Model – Inside logic puriyama irukkara model.
  3. White Box Model – Step by step decision clear-a puriyum model.
  4. AI Ethics – AI fair-a, safe-a build panna rules.
  5. AI Safety – Human-ku harm panna koodatha AI build pannuradhu.
  6. Hallucination – AI confident-ah wrong info create pannidradhu.
  7. Token Limit – Model oru time process panna max text size.
  8. Context Window – AI oru conversation-la remember pannidra text size.
  9. Knowledge Graph – Facts + relation network representation.
  10. Ontology – Concept + relationship formal representation.

I – Agents & Ops

  1. AI Agent – Task autonomous-ah plan pannitu nadathidra program.
  2. Multi-Agent System – Rendu moonu agents serndhu task solve panradhu.
  3. Orchestration – Multiple models/agents manage panna process.
  4. LLMOps – LLM manage panna production tools/process.
  5. MLOps – ML models deployment + monitoring process.
  6. Edge AI – Phone/IoT device-la AI run panradhu.
  7. Cloud AI – Cloud servers-la AI run panradhu.
  8. Federated Learning – Device-la data share pannama train panradhu.
  9. Synthetic Data – Fake-a create panna but real-a maari irukkura training data.
  10. Data Pipeline – Data collect β†’ clean β†’ train process path.

J – Data Prep

  1. Data Cleaning – Wrong/miss data fix pannuradhu.
  2. Data Labeling – Data-ku correct answer tag pannuradhu.
  3. Ground Truth – Real correct output training-ku use pannuradhu.
  4. Overparameterization – Too many parameters add pannudhu β†’ overfit danger.
  5. Pruning – Neural network-la extra parts remove pannitu fast panna.
  6. Quantization – Model size compress panna precision reduce panradhu.
  7. Knowledge Distillation – Small model big model-a copy pannitu train aagudhu.
  8. Scaling Laws – Periya data + compute kudutha AI improve aagum-nu sollum rules.
  9. AI Benchmark – Model performance test.
  10. Open Source AI – Free/public ah use panna kudukkura AI tools.

K – Neural Network Varieties

  1. CNN – Image data-ku special network.
  2. RNN – Sequence/time-series data remember panna network.
  3. LSTM – Long memory maintain panna RNN type.
  4. GRU – Simple memory maintain panna RNN type.
  5. Autoencoder – Data compress + reconstruct panna model.
  6. VAE – Autoencoder type, new data generate panna use aagum.
  7. Capsule Network – CNN advanced version, spatial relation maintain panradhu.
  8. Encoder – Input purinjuka panna transformer part.
  9. Decoder – Output generate panna transformer part.
  10. Seq2Seq – Sequence input β†’ sequence output model.

L – AI in Real Life

  1. Speech Recognition – Voice convert panna text.
  2. Text-to-Speech – Text convert panna human-like voice.
  3. OCR – Image-la irukkura text read panna AI.
  4. Chat Completion – Chat la human answer mathri output generate panna.
  5. Image Generation – Prompt kuduthu pudhusaa image create panna.
  6. Video Generation – Text description-la irundhu video create panna.
  7. Code Generation – Program code AI auto write panradhu.
  8. Style Transfer – Image content same, style mattum change panradhu.
  9. Super Resolution – Image quality improve pannidradhu.
  10. Speech Synthesis – Text β†’ audio maari voice produce panradhu.

M – Probability Concepts

  1. Bayesian Network – Probability-based decision model.
  2. Markov Chain – Next state predict panna present state use pannidradhu.
  3. Hidden Markov Model – Hidden states + sequence model.
  4. Monte Carlo Simulation – Random sample use panni result estimate panna.
  5. Probability Distribution – Outcome chances describe pannidradhu.
  6. Prior Probability – Data munnaadi irukkura chance value.
  7. Posterior Probability – Data apram update panna probability.
  8. Likelihood – Model observed data match panna measure.
  9. Entropy – Data uncertainty measure.
  10. Information Gain – Data uncertainty reduce panna info.

N – Model Testing & Eval

  1. Cross-Validation – Data split pannitu different parts-la model test panradhu.
  2. Confusion Matrix – True vs predicted result table.
  3. ROC Curve – Different thresholds-ku performance show pannura chart.
  4. AUC – ROC curve area, performance score.
  5. True Positive (TP) – Correct-ah positive predict pannadhu.
  6. False Positive (FP) – Wrong-ah positive predict pannadhu.
  7. True Negative (TN) – Correct-ah negative predict pannadhu.
  8. False Negative (FN) – Miss pannina positive cases.
  9. Cross-Entropy Loss – Classification-ku mostly use panna error measure.
  10. MSE (Mean Squared Error) – Regression-ku error average.

O – Tools & Frameworks

  1. TensorFlow – Google build pannina deep learning framework.
  2. PyTorch – Meta build pannina famous deep learning tool.
  3. Keras – Easy interface deep learning library.
  4. Scikit-learn – Traditional ML-ku use panna Python library.
  5. Hugging Face – Pretrained NLP models-ku famous platform.
  6. LangChain – LLM apps build panna framework.
  7. AutoML – AI models auto build panna toolset.
  8. MLflow – ML experiments track + manage panna tool.
  9. Weights & Biases – Training monitor panna SaaS tool.
  10. ONNX – Model share panna open standard format.

P – Hardware & Compute

  1. GPU – AI training fast panna graphic chip.
  2. TPU – Google create pannina AI-special chip.
  3. CPU – General computer processor.
  4. FPGA – Customize panna hardware AI-ku use aagum.
  5. ASIC – Special chip, oru task-ku design panninadhu.
  6. Quantum AI – Quantum computer use panni AI run panradhu.
  7. Distributed Training – Multiple machine-la parallel model train panradhu.
  8. Parallel Processing – Same time-la multiple calculation nadakkaradhu.
  9. Batch Processing – Large data chunk-by-chunk process panradhu.
  10. Streaming Processing – Real-time continuous data process panradhu.

Q – Industry Uses

  1. Autonomous Vehicle – AI-la run aagura self-driving car.
  2. Healthcare AI – Disease detect panna medical AI usage.
  3. FinTech AI – Banking/fraud detect panna AI.
  4. E-commerce AI – Shopping site-la recommendation/chatbot AI.
  5. Robotics – AI power kudutha machine action.
  6. Smart Assistant – Siri/Alexa maari help pannura AI.
  7. Predictive Maintenance – Machine breakdown munnaadi predict panna AI.
  8. Sentiment Analysis – Text-la emotion understand panna AI.
  9. EdTech AI – Student-ku personalized study kudukkura AI.
  10. Gaming AI – Game NPC intelligent behaviour kudukkara AI.

R – Advanced Topics

  1. Multimodal AI – Text + image + audio mix process panna AI.
  2. Self-Supervised Learning – AI data itself use panni label generate panradhu.
  3. Contrastive Learning – Similarity/difference compare pannitu model train panradhu.
  4. Foundation Model – Periya general-purpose base model.
  5. Autoregressive Model – Sequence next step predict panna model.
  6. Masked Language Model – Sentence missing word predict panna AI.
  7. Knowledge Transfer – Oru model padicha knowledge innoru task-ku transfer panradhu.
  8. Curriculum Learning – Easy β†’ hard order-la train panna method.
  9. Chain of Thought (CoT) – Step by step reasoning AI-ku teach panradhu.
  10. Tool-Using AI – AI external tools/APIs call panna capability.

S – Future & Governance

  1. AGI – Human madri ella taskum pannidra intelligence.
  2. ASI – Human-ai vida periya intelligence.
  3. Narrow AI – Single task-ku specialist AI.
  4. Ethical AI – Fair + bias illama irukkara AI.
  5. Responsible AI – Accountable + safe AI build panradhu.
  6. AI Governance – AI-ku policy + framework set pannadhu.
  7. AI Regulation – Government rules AI usage-ku.
  8. Fairness – Bias illama equal decision AI panna vendiyadhu.
  9. Transparency – AI decision explain pannura clarity.
  10. Trustworthy AI – Human nambikkai kidaikkara AI.

T – Buzzwords & Companies

  1. AI Agent Framework – Agent build panna toolkit.
  2. CrewAI – Multi-agent AI system framework.
  3. Ollama – Local laptop-la LLM run panna tool.
  4. RoboFlow – Computer vision dataset-ku tool.
  5. Anthropic – Claude AI create pannina company.
  6. OpenAI – ChatGPT create pannina company.
  7. Google DeepMind – AlphaGo + research AI company.
  8. Stability AI – Stable Diffusion create pannina company.
  9. Perplexity AI – AI-powered search assistant.
  10. Mistral AI – Open-source LLM build pannura company.

Leave a comment

Discover more from tanglish.tech

Subscribe now to keep reading and get access to the full archive.

Continue reading