A β Basics
- AI (Artificial Intelligence) β Computer-ku manushan maari yosikka teach panradhu.
- Machine Learning β Data-la irundhu self-ah kathukkara computer method.
- Deep Learning β Neural network use panni periya periya pattern kathukkara ML.
- Neural Network β Brain mathiri node-connect panni info process panradhu.
- Algorithm β Oru problem solve panna step-by-step rules.
- Model β Train pannina program prediction panna use aagum.
- Training Data β Model-ku padikka kudukkara data.
- Testing Data β Model padichadhu correct-ah iruka nu check panna data.
- Validation Data β Training time tune panna use panra data.
- Dataset β Collection of data arranged for AI padippu.
B β Learning Types
- Supervised Learning β Input + answer kuduthu model train panradhu.
- Unsupervised Learning β Answer illama patterns kandu pudikkara training.
- Reinforcement Learning β Good action reward, wrong action penalty kuduthu train panradhu.
- Classification β Data-va category-ku sort panradhu (spam vs non-spam).
- Regression β Number predict panradhu (house price maari).
- Clustering β Similar data-va group panradhu.
- Anomaly Detection β Odd/abnormal data kandu pudikkaradhu.
- Recommendation System β Suggest pannadhu (Netflix movies maari).
- NLP (Natural Language Processing) β Computer-ku manush language puriyara madri padippu.
- Computer Vision β Computer-ku image/video puriyara ability.
C β Words in Models
- Token β Text-oda chinna unit (word or part of word).
- Embedding β Text/image-a number-ah convert panna method.
- Vector Database β Embedding store panna special DB.
- RAG β Stored knowledge + new info combine pannitu answer kudukkara model.
- Transformer β Innum pudhusaa irukkara AI architecture (GPT use pannathu).
- Attention β Sentence-la important word focus panna technique.
- LLM β Periya model, massive text-la train pannathu (ChatGPT maari).
- Chatbot β Human-oda chat panna program.
- Prompt β AI-ku kudukkara input text.
- Prompt Engineering β Better prompt kuduthu nalla output vangara skill.
D β Training Related
- Fine-Tuning β Already train pannina model-a namma data-la adjust panradhu.
- Transfer Learning β Old model knowledge reuse panna new task-ku.
- Pre-Trained Model β Already periya data-la padichirukkara model.
- Zero-Shot β Example illama solve pannidradhu.
- Few-Shot β Konjam example kuduthu solve pannadhu.
- Generative AI β Pudhusaa text/image/music create pannidradhu.
- Discriminative Model β Category separate panna model.
- GAN β Oru model fake data create pannum, innoru detect pannum.
- Diffusion Model β Step by step image generate pannidradhu.
- Embedding Search β Closest match vector DB-la thedi pudikkaradhu.
E β Performance Terms
- API β Software-ku AI-oda pesara interface.
- Latency β AI answer kudukkara delay time.
- Overfitting β Training data memorize panniduchu, new data-la fail aagum.
- Underfitting β Model simple-ah irundhu data purinjuka mudiyala.
- Bias β Training data wrong balance-a irundha unfair result.
- Variance β Prediction too much vary aagardhu.
- Accuracy β Correct prediction percentage.
- Precision β Predict pannina positives-la correct irukardhu evlo.
- Recall β Actual positives-la detect panninadhu evlo.
- F1 Score β Precision + Recall balance measure.
F β Training Process
- Epoch β Full training data one round pass panna time.
- Batch Size β Oru time-la model process panna sample count.
- Learning Rate β Model eppadi fast-ah kathukkudhu decide panna speed value.
- Loss Function β Prediction wrong-a irundha error measure pannura formula.
- Optimizer β Model error reduce panna adjustment method.
- Gradient Descent β Step by step error kammi pannitu improve panra method.
- Backpropagation β Neural network weight update panna reverse calculation.
- Weights β Model decision influence panna internal number values.
- Parameters β Model-ku learning-ku use aagura adjustable numbers.
- Hyperparameters β Training start panna munadi set pannura settings.
G β Data Handling
- Feature β Prediction-ku use panna input variable.
- Label β Output or correct answer AI predict panna vendiyadhu.
- Feature Engineering β Raw data-la irundhu useful inputs create panradhu.
- Dimensionality Reduction β Data size kammi pannitu important info maintain panradhu.
- PCA β Data-ku dimension kammi panna math method.
- Normalization β Data value 0β1 range-ku scale pannuradhu.
- Standardization β Data mean 0, variance 1 mathri normalize pannuradhu.
- Data Augmentation β Training data variety create panna fake modifications (image flip maari).
- Label Encoding β Text labels number-ku convert panradhu.
- One-Hot Encoding β Category data binary 0/1 columns-la represent panradhu.
H β AI Transparency
- Explainable AI β Human-ku AI decision puriya mathri explain panradhu.
- Black Box Model β Inside logic puriyama irukkara model.
- White Box Model β Step by step decision clear-a puriyum model.
- AI Ethics β AI fair-a, safe-a build panna rules.
- AI Safety β Human-ku harm panna koodatha AI build pannuradhu.
- Hallucination β AI confident-ah wrong info create pannidradhu.
- Token Limit β Model oru time process panna max text size.
- Context Window β AI oru conversation-la remember pannidra text size.
- Knowledge Graph β Facts + relation network representation.
- Ontology β Concept + relationship formal representation.
I β Agents & Ops
- AI Agent β Task autonomous-ah plan pannitu nadathidra program.
- Multi-Agent System β Rendu moonu agents serndhu task solve panradhu.
- Orchestration β Multiple models/agents manage panna process.
- LLMOps β LLM manage panna production tools/process.
- MLOps β ML models deployment + monitoring process.
- Edge AI β Phone/IoT device-la AI run panradhu.
- Cloud AI β Cloud servers-la AI run panradhu.
- Federated Learning β Device-la data share pannama train panradhu.
- Synthetic Data β Fake-a create panna but real-a maari irukkura training data.
- Data Pipeline β Data collect β clean β train process path.
J β Data Prep
- Data Cleaning β Wrong/miss data fix pannuradhu.
- Data Labeling β Data-ku correct answer tag pannuradhu.
- Ground Truth β Real correct output training-ku use pannuradhu.
- Overparameterization β Too many parameters add pannudhu β overfit danger.
- Pruning β Neural network-la extra parts remove pannitu fast panna.
- Quantization β Model size compress panna precision reduce panradhu.
- Knowledge Distillation β Small model big model-a copy pannitu train aagudhu.
- Scaling Laws β Periya data + compute kudutha AI improve aagum-nu sollum rules.
- AI Benchmark β Model performance test.
- Open Source AI β Free/public ah use panna kudukkura AI tools.
K β Neural Network Varieties
- CNN β Image data-ku special network.
- RNN β Sequence/time-series data remember panna network.
- LSTM β Long memory maintain panna RNN type.
- GRU β Simple memory maintain panna RNN type.
- Autoencoder β Data compress + reconstruct panna model.
- VAE β Autoencoder type, new data generate panna use aagum.
- Capsule Network β CNN advanced version, spatial relation maintain panradhu.
- Encoder β Input purinjuka panna transformer part.
- Decoder β Output generate panna transformer part.
- Seq2Seq β Sequence input β sequence output model.
L β AI in Real Life
- Speech Recognition β Voice convert panna text.
- Text-to-Speech β Text convert panna human-like voice.
- OCR β Image-la irukkura text read panna AI.
- Chat Completion β Chat la human answer mathri output generate panna.
- Image Generation β Prompt kuduthu pudhusaa image create panna.
- Video Generation β Text description-la irundhu video create panna.
- Code Generation β Program code AI auto write panradhu.
- Style Transfer β Image content same, style mattum change panradhu.
- Super Resolution β Image quality improve pannidradhu.
- Speech Synthesis β Text β audio maari voice produce panradhu.
M β Probability Concepts
- Bayesian Network β Probability-based decision model.
- Markov Chain β Next state predict panna present state use pannidradhu.
- Hidden Markov Model β Hidden states + sequence model.
- Monte Carlo Simulation β Random sample use panni result estimate panna.
- Probability Distribution β Outcome chances describe pannidradhu.
- Prior Probability β Data munnaadi irukkura chance value.
- Posterior Probability β Data apram update panna probability.
- Likelihood β Model observed data match panna measure.
- Entropy β Data uncertainty measure.
- Information Gain β Data uncertainty reduce panna info.
N β Model Testing & Eval
- Cross-Validation β Data split pannitu different parts-la model test panradhu.
- Confusion Matrix β True vs predicted result table.
- ROC Curve β Different thresholds-ku performance show pannura chart.
- AUC β ROC curve area, performance score.
- True Positive (TP) β Correct-ah positive predict pannadhu.
- False Positive (FP) β Wrong-ah positive predict pannadhu.
- True Negative (TN) β Correct-ah negative predict pannadhu.
- False Negative (FN) β Miss pannina positive cases.
- Cross-Entropy Loss β Classification-ku mostly use panna error measure.
- MSE (Mean Squared Error) β Regression-ku error average.
O β Tools & Frameworks
- TensorFlow β Google build pannina deep learning framework.
- PyTorch β Meta build pannina famous deep learning tool.
- Keras β Easy interface deep learning library.
- Scikit-learn β Traditional ML-ku use panna Python library.
- Hugging Face β Pretrained NLP models-ku famous platform.
- LangChain β LLM apps build panna framework.
- AutoML β AI models auto build panna toolset.
- MLflow β ML experiments track + manage panna tool.
- Weights & Biases β Training monitor panna SaaS tool.
- ONNX β Model share panna open standard format.
P β Hardware & Compute
- GPU β AI training fast panna graphic chip.
- TPU β Google create pannina AI-special chip.
- CPU β General computer processor.
- FPGA β Customize panna hardware AI-ku use aagum.
- ASIC β Special chip, oru task-ku design panninadhu.
- Quantum AI β Quantum computer use panni AI run panradhu.
- Distributed Training β Multiple machine-la parallel model train panradhu.
- Parallel Processing β Same time-la multiple calculation nadakkaradhu.
- Batch Processing β Large data chunk-by-chunk process panradhu.
- Streaming Processing β Real-time continuous data process panradhu.
Q β Industry Uses
- Autonomous Vehicle β AI-la run aagura self-driving car.
- Healthcare AI β Disease detect panna medical AI usage.
- FinTech AI β Banking/fraud detect panna AI.
- E-commerce AI β Shopping site-la recommendation/chatbot AI.
- Robotics β AI power kudutha machine action.
- Smart Assistant β Siri/Alexa maari help pannura AI.
- Predictive Maintenance β Machine breakdown munnaadi predict panna AI.
- Sentiment Analysis β Text-la emotion understand panna AI.
- EdTech AI β Student-ku personalized study kudukkura AI.
- Gaming AI β Game NPC intelligent behaviour kudukkara AI.
R β Advanced Topics
- Multimodal AI β Text + image + audio mix process panna AI.
- Self-Supervised Learning β AI data itself use panni label generate panradhu.
- Contrastive Learning β Similarity/difference compare pannitu model train panradhu.
- Foundation Model β Periya general-purpose base model.
- Autoregressive Model β Sequence next step predict panna model.
- Masked Language Model β Sentence missing word predict panna AI.
- Knowledge Transfer β Oru model padicha knowledge innoru task-ku transfer panradhu.
- Curriculum Learning β Easy β hard order-la train panna method.
- Chain of Thought (CoT) β Step by step reasoning AI-ku teach panradhu.
- Tool-Using AI β AI external tools/APIs call panna capability.
S β Future & Governance
- AGI β Human madri ella taskum pannidra intelligence.
- ASI β Human-ai vida periya intelligence.
- Narrow AI β Single task-ku specialist AI.
- Ethical AI β Fair + bias illama irukkara AI.
- Responsible AI β Accountable + safe AI build panradhu.
- AI Governance β AI-ku policy + framework set pannadhu.
- AI Regulation β Government rules AI usage-ku.
- Fairness β Bias illama equal decision AI panna vendiyadhu.
- Transparency β AI decision explain pannura clarity.
- Trustworthy AI β Human nambikkai kidaikkara AI.
T β Buzzwords & Companies
- AI Agent Framework β Agent build panna toolkit.
- CrewAI β Multi-agent AI system framework.
- Ollama β Local laptop-la LLM run panna tool.
- RoboFlow β Computer vision dataset-ku tool.
- Anthropic β Claude AI create pannina company.
- OpenAI β ChatGPT create pannina company.
- Google DeepMind β AlphaGo + research AI company.
- Stability AI β Stable Diffusion create pannina company.
- Perplexity AI β AI-powered search assistant.
- Mistral AI β Open-source LLM build pannura company.


Leave a comment