🗄️ Storage & Data Lakes

  • Amazon S3 – “Data-ah store pannanum-na, S3-la pottu safe-ah vachukonga”
  • AWS Lake Formation – “Data lake setup panna AWS-e help panniduvum, neenga tension vendam”
  • Amazon S3 Glacier – “Old data-ah cheap-ah store pannum, access slow-ah irukum”
  • AWS Storage Gateway – “On-premise and cloud storage-ah connect panniduvum”

🗃️ Databases

  • Amazon RDS – “Database manage panna time illa-na, RDS automatic-ah patthukum”
  • Amazon DynamoDB – “NoSQL database ku speed venum-na, DynamoDB millisecond-la response kudukum”
  • Amazon Aurora – “MySQL/PostgreSQL-ah cloud-native-ah fast-ah panniduvum”
  • Amazon DocumentDB – “MongoDB compatible-ah document store panniduvum”
  • Amazon Neptune – “Graph database venuma? Relationships-ah Neptune handle panniduvum”
  • Amazon Timestream – “Time series data ku specialized database”
  • Amazon QLDB – “Ledger database venuma? Immutable records QLDB-la store pannalam”
  • Amazon ElastiCache – “Redis/Memcached cache ku ElastiCache use pannalam”
  • Amazon MemoryDB – “Redis compatible-ah in-memory database”

📊 Analytics & Business Intelligence

  • Amazon Redshift – “Big data analytics ku warehouse venuma? Redshift-la fast-ah query podalam”
  • Amazon QuickSight – “Dashboard and visualization ku QuickSight-ah use pannalam”
  • Amazon Athena – “S3-la irukura data-ah SQL query pannalam, server vendam”
  • Amazon EMR – “Big data processing ku Hadoop/Spark cluster ready panniduvum”
  • AWS Glue DataBrew – “Data cleaning visual-ah pannalam, code ezhuda vendam”

🔄 Data Processing & ETL

  • AWS Glue – “Data cleaning and transformation ku manual work vendam, Glue serverless-ah panniduvum”
  • AWS Data Pipeline – “Data workflow orchestration ku pipeline create pannalam”
  • AWS Step Functions – “Complex workflow-ah visual-ah design pannalam”
  • Amazon AppFlow – “SaaS applications-la irundhu data sync panniduvum”

Streaming & Real-time Data

  • Amazon Kinesis Data Streams – “Real-time data streaming ku Kinesis use pannalam”
  • Amazon Kinesis Data Firehose – “Streaming data-ah automatically S3/Redshift-ku deliver panniduvum”
  • Amazon Kinesis Analytics – “Streaming data-ah real-time-la analyze pannalam”
  • Amazon MSK – “Managed Kafka service venuma? MSK use pannalam”

🚚 Data Migration & Transfer

  • AWS DMS – “Database migration-ku DMS automatic-ah panniduvum”
  • AWS DataSync – “On-premise to cloud data sync pannalam”
  • AWS Snow Family – “Petabyte data transfer ku physical device use pannalam”
  • AWS Transfer Family – “SFTP/FTPS file transfer managed service”

🤖 Machine Learning Data Services

  • Amazon SageMaker Data Wrangler – “ML data preparation visual-ah pannalam”
  • AWS Data Exchange – “Third-party data marketplace-la data vangalam”
  • Amazon Lookout for Metrics – “Anomaly detection automatic-ah panniduvum”

📈 Data Catalog & Governance

  • AWS Glue Data Catalog – “Metadata repository-ah centralized-ah maintain pannalam”
  • Amazon Macie – “Sensitive data-ah automatically identify and protect panniduvum”

🔍 Search & Analytics

  • Amazon OpenSearch – “Elasticsearch cluster managed service-ah use pannalam”
  • Amazon CloudSearch – “Simple search service ku CloudSearch use pannalam”

📱 Mobile & IoT Data

  • AWS IoT Core – “IoT device data-ah cloud-la collect pannalam”
  • AWS IoT Analytics – “IoT data-ah analyze panna specialized service”
  • Amazon Timestream – “IoT time series data ku optimized database”

Total: 35+ AWS Data Services!

📸 Instagram: @dataengineeringtamil | 💼 LinkedIn: @sbgowtham

“AWS-la data services neraya iruku, but oru service-ku oru purpose – choose pannitu use pannunga!”

Leave a comment

Discover more from tanglish.tech

Subscribe now to keep reading and get access to the full archive.

Continue reading